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I. INTRODUCTION

Consider the following adaptive control problem introduced by Rishel [7].

Let xe R n be an unknown parameter. We consider a Bayesian set up,

where x is distributed according to some prior density po(x), which may or may

not be compactly supported. Let wt be an m dimensional Brownian motion, and

define yt by

Yt = Y0 + Wt (1.1)

Let Ft be the sigma field generated by ys, 0 < s < tJ and Gt be the sigma field

generated by ({ys, 0 < s _ t] v x). Let U be a compact subset of Rq. Let A(x,y) E

R m and B(x) E Rmxq be matrices depending on the unknown parameter x and on

y. Conditions on A(x,y) and B(x,y) will be imposed below.

Define an admissible control u(t) to be a U valued stochastic process

satisfying:

(a) ut is Ft adapted
T

(b) E exp (2 I IA(x,yt) + B(x)utII2dt) < oo Vx E supp p0(x)

In particular, if A(x,y) and B(x) are bounded, (b) reduces to a trivial condition.

The set of admissible controls will be denoted by U. Define:

T T

AT= exp (A(XYt) + B(x)ut) udwt - A(x,yt) + B(x)u [[ dt
0 0

(1.2)

where * denotes the operation of taking transposes. By b), E(AT) = 1, and we may

define a new measure pu such that dpY = AT, under whichdp
t

Yt = Y0 + (A(x,yt) + B(x)ut)ds + Wu (1.3)
0

where ws is a pu Brownian motion.

The adaptive control goal is to minimize over the class of admissible control

an objective cost of the form
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T

JU =Eu (Ys u s)ds (1.4)
0

We assume throughout that

IC(y,u,t)l < K(1 + lyl )

a£(y,u,t) r

_< K(l+lylr)

For some r > 0.

Note that (1.4) is a partially observed stochastic control problem, for under

pu x is not known to be controller.

In [7], Rishel has considered a version of the problem (1.3), (1.4) and

proved a stochastic maximum principle. Explicit solutions for particular cases were

derived in [1], [2]. Hijab [4] considered a modified version of (1.3) where under a

linearity assumption and a more general model of x, he found an explicit solution to

a problem where information cost is attached to JU and the cost is a function of x

and u. Here, we exploit, as in [1], [2], the finite dimensionality of the estimation

problem, as follows: By taking conditional expectations in (1.3), one has [7]:

dyt = EU(A(x,yt)lFt)dt + EU(B(x)lFt)utdt + dvt (1.5)

where vt is an Ft Brownian motion. In the sequel, ^ will denote conditional

expectations w.r.t. Ft, i.e.

A (x,y)= E (A(x,yt)lFt)

For simplicity and concreteness, we assume below that

A(x,y) = Aoy + Al(y)x (1.6)
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B(x) = Bo + B (x), B j(x) = bj x, i.e.
k

B(x)u= B0 u + Bl(u)x where B 1(u) - bJ mu (1.7)
m

The linearity assumption of A(x,y) w.r.t. x can be dispensed of if one has a
separation of variable of the form A(x,y) = Al(y)g(x) + Ao(y); similarly, one could
include a y-dependence in B(x) in a separation of variable form. Since those
extensions are easily handled, we do not consider them here.

Following now the argument of Liptser-Shiryayev [6, ch. 12],
appropriately modified to our case due to the non-Gaussian assumptions on xO,
(c.f., e.g., [3], [9]) one has the following:

Lemma 2.1:

P0( x ) 1
Nx(,) exp( (x-yt)*ct'(x-yt))

N (O,I) 2 t tp(xIFt) = JP (x ) (1.8)

exp (- x*x)

where Nx(O,I) - ... n/, yt is an n-dimensional vector and ct is an nxn dimensional

matrix which satisfy:

dyt = aCx[Al(yt) + Bl(ut)] [dy t - (AoYt + Bout + (Al(Yt) + Bl(Ut))ytdt]

(1.9a)

Y0 = 0

dat = -at[Al(y t) + Bl(ut)] [Al(y t) + Bl(u)]act; c = I (1.9b)

Proof: Note that as in [1], [3], [9] the unnormalized density dzpx(zIFt) =
Prob(xe (z,dz)lFt) * Kt, where Kt is Ft adapted, is of the form:
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dzpx(ZIFt) = E(AT lxE(z,z+dz)lFt)

= E(Atl x(zz+dz)lF t a
t

dzpo(z) exp(-2- z*[Al(y s) + B 1(us)]*[Al(y s) + Bl(Us)] zds
0

t

+ jz*[Al(Ys) + Bl(us)]*(dy s - (AoYs + Bou dt)
0

Dividing and multiplying by Nx(0,I), one obtains (2.8). We remark that exactly as

in [6], at is positive definite for 0<t<T. r]

Note that yt can be now rewritten as:

dy t = (AoYt + Bout)dt + (Al(yt) + Bl(ut))F(yt, at)dt + do t; yo = 0 (1.9c)

where

J PO() Nx(y,ctl)dx

F(y,a) (1.10)
f Po(X) NNx(y,a-l)dx

Nx(O,1)

where Nx(ya) denotes a Gaussian distribution with mean y, covariance matrix

a-1. Note that (1.9) together with (1.4) form a completely observable stochastic

control problem. It is however somewhat a complicated one due to the degeneracity

of the diffusion matrix, the fact that control enters the diffusion matrix and the non-

Lipschitz coefficients of (1.9).

In some simple cases (and specifically, in the case where B(x) = B). Benes

and Rishel [1] have been able to compute explicitly optimal controls via the

Hamilton-Jacobi-Bellman equation and the maximum principle. In the general

case, however, the Bellman equation does not seem solvable and we are led to

consider e-optimal approximations.

Remark. Note that if po(x) = Nx(0,I), F(y,a) = y.
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2. e-OPTIMAL RANDOMIZED MARKOV STRATEGIES.
In this section, we construct e-optimal randomized Markov strategies for the

problem posed in section 1, i.e. for (1.9) and (1.4). Those strategies are defined

in terms of a classical solution of an associated Bellman equation. For simplicity,

we make the following structural restrictions. Those restrictions are not crucial and

could be avoided at the expense of more cumbersome expressions and proofs.
Additional restrictions of more technical nature (boundedness etc.) will be imposed

later (c.f. lemma 2.1).

Assumptions.
Ao = Bo = 0 (2.1a)

po(x) Nx(0,I) (2.1b)

We will seek to apply the method of [5, ch. 5]. To do that, it will however

be convenient to rewrite (1.9) in a different way: Let Pt = atcYt

d t = -at[Al(yt) + Bl(ut)] [Al(yt) + Bl(ut)]at; a 0 = I (2.2a)

dpt = +[Al(y t) + Bl(ut)]*[Al(y t) + Bl(ut)]at Ptdt + [Al(yt) + Bl(ut)]*dO t

do = O (2.2b)

dyt = +[A l(Yt) + Bl(ut)]0ctltdt + d t (2.2c)

In the sequel, b will denote the drift vector in (2.2) and a will denote the diffusion

matrix there. Note that (2.2) does not satisfy the conditions of [5, ch. 5] and

therefore the methods described there have to be modified to be applicable.
Note that (2.2) is locally Lipshitz; however, we will need global Lipschitz

conditions. Towards this end, let

n P{e3R n yeRm l 1[l <R, lyl < RI

XR ={inf t > 01 (t, t) £ a R}

For g denoting either b(ca, A, y) or a((a, 3, y), let
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gR (a,,y) = g(a, - - (113l AR), ly (lyl AR)

Let now aR, 1R, yR denote the solution to (2.2) when bR, oR is substituted

instead of b, o. Finally, let JUR denote JU in (2.4) with yR substituted instead of y.

We claim

Lemma 2.1. Assume IAl(y)l < K, IBI(u)l < K for u e U. Then

IJU - JUI -4 0 uniformly on all admissible strategies.
R--

Proof. Note first that by the boundedness of IAl(y)l, IBl(u)l and of xt, one

has by standard arguments that E[ 2p ] < oo, where 4t stands for either Pt, Yt, R,

R Next, we note that
Yt'e

IJRuJUI EU Jl(yS US S) - r(Y, u, s)lds

T

< KlP(tR <T) * sup E(IyIr + y IyI)ds
Yo , o0

' o

Note that by standard estimates,

sup sup E(lyslr ) < K2 sup sup E(l3SI) <K3 R (2.4)
Yo S io E ni O *o £ fis O2 sY '130 c fjR

with a similar bound on E(lyRIr). On the other hand,

P('R < T) < P(K 4 sup Vt > R) (2.5)
te[O,T]

E(sup v)2r K

- 5 R2r - R2r

where the constants K1 - K6 do not depend on u. Therefore,

K
IJu - JUI < 7 > ° (2.6)

R- R- ,o
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and the lemma is proved. E
In view of the lemma above, it is enough to build e-optimal strategies for

the system indexed by R, for R large enough. We will attempt to do that by

perturbing (2.2a) and (2.3b) with an auxilliary Brownian motion. For reasons to

become clear below, we will not perturb (2.2c). That is the main point where we

depart from the classical treatment [5]. Note however that when perturbing (2.2a)

such that at is no longer positive definite, bR(a,5,y) is no longer Lipschitz

continuous and moreover, (3.2a) may have a finite explosion time. To remedy that,

we modify bR (a, 3, y) on the set of non-positive a'-s; This will not affect the

solution of (2.2) since in (2.2), a > 0 a.s.

Let UR(a,[,y) A bR(Pa,[,y) where Pa denotes the projection of the

symmetric matrix a on the convex set {lal < R A a > 0}. Note that the system

(2.2) with (UR, oR) is identical to the system with (bR, oR), and that (bR,cyR) are

globally Lipshitz. Consider the following perturbed system:

- -R 1 d'a ~(2.7a)
dat = b (u, a c, yF)dt + eIdwt

-t a+ 2 (2.7b)
d£ = b R(U, c(, Pc; yE)dt + O (u,yE)dO + £Idw 

dyt = (U,ax,[3, y5 )d t + dO t (2.7c)

t 2
where wl, wt are independent Brownian motions of appropriate dimensions. Note

that (2.7) is uniformly nondegenerate, and that for e=O (2.7) reduces to (2.2) with

(bR, aR) instead of (b,a). Let ve (s,x) denote the value function of the control

problem (2.7) together with (2.4), i.e.

v (s,x) = inf JR (a e, o, ye) (2.8)
uEU

(a,0 PO,yO )=x

and let LRj be the Backward Kolmogorov operator associated with (2.7). By [5,

Thm. 4.7.7], we have that v (s,x) E W1,2 (CT,R1) for each R1 > 0. Moreover, by



9

[5, Lemma 5.1.1], for each 8 > 0 and R 1 > 0 there exists an infinitely differentiable

feedback strategy u'6(xE,t) with uniformly bounded spacial first derivatives such

that oR(u'8(xe,t), x) and bR( u6(xE,t),x) are uniformly Lipshitz continuous and

such that

sup IF[v ]- [LR V+ £ ] < § (2.9)
tc(O,T)

where

F[u ] sup [L u +I]
UEU

Finally, note that again by [5, Corollary 3.1,13], v (s,x) -- V (s,x) uniformly in

CT,R.
We can state now our main result::

Theorem, Assume the conditions in lemma 2.1. Let

u 'r (x,t) = u (a+cwl, 13+ew2, y).

Then

UR U R
lim im im JR ' =inf JR = lim V (0,xo)
E-40 RToo 810 UEU E 0-- 0

i.e., one can construct feedback randomized control for the system (2.2) which will

be as close as desired to the optimal control.

Proof. The proof is an adaptation to the proof of [5, Thm. 5.2.5)]. Note that

under UR,8 the system (2.2a) (with BR, o R instead of (b,a)) is transformed into

the system:

dc c = 15 R(u 8'(aE, 5, ye), CEX - -ew1, S 2, y) dt + edw (2.10a)

dpc = b R(uR86(ao, pf, ye), c£ --W 1,' P - £W2, yE)dt + £dw 2 (2.10b)

+ 0YR(yE, u'6(xe, 3, y8 ))dO
p 1 Ri~, /U t
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dyc = $ R(,u,,s,(,(a 13c, yE), s - W 1' - Ew2, yE) dt + dO (2.10c)y( R1 k '-

Since (2.10a) is uniformly nondegenerate and v£ (s,x) E W1,2(CT,), one has

from the weak Ito formula ([5, thm. 2.10.1]), that, for each (£,8,R1) = il

v (O,xO)= E t + v(TA xRA ) (2.11)

'rR AT
14 UR

-EJ [LR v + I R ]dt
0

_R AT

+ E J [b R(sU'(S), X)
0

-b (uR8(s,xe), x' - £w)]VxV (s,x 5)ds

By the same arguments as in [5, thm. 5.2.5], the first terms converge to JR , the second term

converges to zero, whereas since IVxve(s,xe)l < K (1+lxelr), one has also the

required convergence for the last term. The theorem is proved. O

Remarks: 1) Note that the main difference from [5] is that we have used e-

perturbation only in some of the components of the diffusion. Perturbing all the

components would have violated the structural condition under which one may

trade controls by randomized controls.

2) The theorem proved allows one to actually build £-optimal control.

Indeed, for a given £, pick up 8,R,R1,e such that

A e,8

UJR < inf JU +e
ueU



Such a choice exists due to the theorem. Then uR6 is the required randomized

feedback control. Note that u'6 , which is the feedback function needed to build

uR,, is obtained via a classical solution of the Bellman equation associated with the

system (2.7)-(2.8).
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